Pre-clinical results of a 3D navigation Innovation: Fiber Optic RealShape (FORS) Technology

Joost van Herwaarden

Disclosure

I have the following potential conflicts of interest to report:

- Consulting: Terumo Aortic, Cook Medical, Gore Medical
- Employment in industry
- Stockholder of a healthcare company
- ☐ Owner of a healthcare company
- I do not have any potential conflict of interest

Endovascular therapy has revolutionized medicine

1980 2010

Vascular Therapy

from open...

...to endovascular

UMC Utrecht

Drawback of Endovascular procedures with Fluoroscopy

Drawback of Endovascular procedures with Fluoroscopy

2D Navigation

UMCU-Philips collaboration in Image Guided Therapy has a long history and was intensified in 2012 for

- Development of FORS technology
- Development of FORS devices
- Validation Studies
- Pre-clinical feasibility studies

In collaboration with

Universitätsklinikum Hamburg Eppendorf (dr Tilo Kölbel)

Universitätsklinikum Münster (dr Giuseppe Panuccio)

Henri Mondor Hospital, Creteil (dr Hicham Kobeiter & dr Frederique Cochennec)

FORS technology allows for real-time 3D visualization, using light

FORS technology allows for real-time 3D visualization, using light

The FORS technology & Medical devices

UMC Utrecht

FORS enabled angiographic devices

Investigational, not commercially available

3

FORS Cobra catheter

Gold standard

with Fiber Optic RealShape (FORS)

Cannulation time: 5:45 min

Fluoro time: 5:45 min

Cannulation time: 2:20 min Fluoro time: 0 min

phantom & animal

Objective

- Confirmation that the FORS technology aids the navigation and positioning during endovascular interventions, in conjunction with fluoroscopy
- 2. Qualitative assessment of performance of the devices & equipment

Methods

- 6 Operators (Derbel, van Hattum, Hazenberg, Kobeiter, van Strijen, van Herwaarden)
- 72 Catheterizations of target vessels in phantom and 72 in swine
 - 60/72 catheterizations with FORS wire & catheter, 12 with FORS wire and commercially available catheter
- Questionnaire for assessment of qualitative performance

phantom & animal

Results

- Phantom: 72/72 successful catheterizations
- Animal: 70/72 (97%) successful catheterizations
- Questionnaire: Operators enthusiastic about qualitative performance

Iliac Cross-over

Right Renal Catheterization

SMA Catheterization

Conclusions from pre-clinical studies

- Endovascular procedures with FORS technology are feasible
- Due to Fiber Optic technology less fluoroscopy is needed
- 3D navigation and 3D visualization of devices is helpful

First-in-Human study

Inclusion:

- 10 consecutive Patients for simple and complex (F)EVAR's
- 10 consecutive patients for peripheral procedures in which hydrophilic floppy guidewire and Berenstein or Cobra catheter are usable

First-in-Human study

Methods

First patient treated on July 31 2018

Results expected @LINC 2019

FORS PROJECT

Acknowledgments

- Frederic Cochennec
- Haytham Derbel
- Hicham Kobeiter
- Tilo Kölbel
- Giuseppe Panuccio
- Marco van Strijen

UMC Utrecht

Thanks to **Philips** and **the UMC-Utrecht FORS team** for their innovative spirit to develop such ground breaking technology

